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LETTER TO THE EDITOR

The Aharonov–Bohm wave and the Cornu spiral

M V Berry† and A Shelankov‡
† H H Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 1TL, UK
‡ Department of Physics, University of Umeå, SE-901 87 Umeå, Sweden

Received 8 July 1999

Abstract. For flux α, the Aharonov–Bohm wavefunction9AB(r, α) is represented exactly in
terms of Fresnel integrals. Numerical evidence shows that in the complex9AB plane the wave clings
to the Cornu spiral for all positionsr except very close to the flux line, that is, the argumentw(r, α)
of the Fresnel integrals is almost real. This is confirmed by deriving an asymptotic expansion for
w in powers of 1/r.

Our purpose is to describe and explain a remarkable property of the Aharonov–Bohm (AB)
wave9AB(r, α) (Aharonov and Bohm 1959, Olariuet al 1985), describing the scattering of
a plane wave of quantum particles with chargeq by a magnetic field confined to a line with
(quantum) fluxα, that is, by the inaccessible field

B(r) = ∇ ×A(r) = h

q
αδ(r). (1)

The property is that9AB has a natural and convenient geometrical representation in
terms of the Cornu spiral (Fresnel integral) of optics. This was discovered through numerical
explorations, motivated by the fact that9AB is given by a Fresnel integral exactly forα = 1

2
(Aharonov and Bohm 1959), and in the paraxial approximation (that is, near the forward
direction) for allα.

In ther plane we use coordinatesr = (x, y) = (r cosθ, r sinθ), and consider the incident
plane wave travelling in the positivex direction. We choose the wavenumberk = 1 (equivalent
to measuring distances in units of wavelength/(2π)).

We begin with the paraxial approximation (Shelankov 1998, Berry 1999), which is most
easily implemented in the sheet gauge where, with2 denoting the unit step

A(r) = As(r) = −α
2
δ(x)[2(y)−2(−y)]ex. (2)

In this approximation, back-scattered waves are neglected, andAs acts like a phase-changing
screen atx = 0, generating the near-forward wave

9AB(r) ≈ 9AB,paraxial(r)

= exp{i(x − 1
4π)}√

2πx

∫ ∞
−∞

dy ′ exp

{
i

[
−παsgny ′ +

(y − y ′)2
2x

]}
= exp(ix)

[
cos(πα)− sin(πα) exp

(
1

4
iπ

)√
2F

(
y√
x

)]
. (3)
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HereF denotes the Fresnel integral, which we here define as

F(w) ≡
∫ w/

√
π

0
dt exp( 1

2iπt2). (4)

Asw varies from−∞ to +∞ through real values, the parametric plot ofF(w) in the complex
F plane describes the Cornu spiral (Born and Wolf 1959).

Motivated by the form of (3), and now reverting to the more familiar circular gauge

A(r) = Ac(r) ≡ h

q

α

2πr
eθ (5)

we define thecornufied waveK for the exact AB wave by

9AB(r) = exp{i(x + αθ)}[cos(πα)− sin(πα) exp( 1
4iπ)
√

2K(r, α)] (6)

that is

K(r, α) ≡ exp(− 1
4iπ)√

2 sin(πα)
[cos(πα)− exp(−i(x + αθ)9AB(r, α)]. (7)

Now we can define our main object of study: the functionw(r, α) defined implicitly and
uniquely by

K(r, α) ≡ F(w(r, α)) =
∫ w(r,α)/

√
π

0
dt exp( 1

2iπt2). (8)

Whenw is real, the cornufied wave lies on the Cornu spiral in the complexK plane. This
is the case paraxially, as in (3), wherew = y/√x, and forα = 1

2, where (Aharonov and Bohm
1959)w = √[2(r − x)] = 2 sin(θ/2)

√
r. Non-zero imaginary parts ofw will correspond to

points off the spiral.
It is easy to computeK numerically via the representation of9AB in the circular gauge

(Aharonov and Bohm 1959) as a convergent series of Bessel functions (withθ replaced by
θ + π because the original AB wave travelled in the direction−x rather than +x)

9AB(r, α) =
∞∑

m=−∞
(−i)|m−α| exp{im(θ + π)}J|m−α|(r). (9)

Figure 1 shows howK condenses onto the Cornu spiral asr increases. This is the
phenomenon we wish to explain. Even whenr = 1, that is 1/(2π) wavelengths from the flux
line, the wave follows the spiral rather closely. Asr increases, the cornufied wave explores
more of the spiral, as expected from the solution forα = 1

2 with the extreme values (in the
backward directionθ = ±π ) w = ±2

√
r, corresponding to the two ‘eyes’ of the spiral (the

origin corresponds to the forward directionθ = 0). As is evident from the groups of points
with differentα, the Fresnel argumentw(r, α) depends on flux, as we will soon explore in
detail.

9AB is a single-valued function of position butK is not; (6) or (7) imply the following
continuation rule in the backward directionθ = ±π :

exp(iπα)K(π, r, α)− exp(−iπα)K(−π, r, α) = (1 + i) cosπα. (10)

Moreover,9AB vanishes at the origin, butK takes the value

K(r, α)→ cot(πα)

1 + i
as r → 0. (11)

Therefore the backward discontinuity (10) must disappear asr → 0, and indeed the value (11)
is the condition for this. This limit represents an extreme departure from the spiral of figure 1,
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Figure 1. Cornufied AB waveK(r, α) (equation (7)), forα = 1
8 (open circles),α =

1
4 (squares),α = 3

8 (diamonds),α = 1
2 (filled circles) andθ = {−π,−3π/4,−π/2,

−π/4, 0, π/4, π/2, 3π/4, π}, compared with the Cornu spiral (full curve); (a): r = 1, (b): r = 2,
(c): r = 3, (d): r = 4.

with points representingK condensing onto the line with slope−π/4, anchored at the origin
K = 0 for α = 1

2, the values ofK depending only onα and not onθ .
The AB wave (9) has the following symmetries:

9AB(r, α + 1) = −exp(iθ)9AB(r, α)

9AB(r, θ,−α) = 9AB(r,−θ, α)
(12)

enabling us to restrict the range ofα to 06 α 6 1
2—although all subsequent formulae will be

valid in the larger interval 06 α < 1. Moreover, although9AB is a periodic function ofθ we
will find it convenient to restrict angles to the range−π 6 θ 6 π , and confirm later that the
wave is single-valued according to (10).

To manipulate9AB into the form (6), we first note that recurrence formulae for Bessel
functions enable the radial and angular derivatives to be written (generalizing an equation in
Aharonov and Bohm (1959)) as (denoting derivatives∂/∂x by ∂x)(
∂r
i
r
∂θ

)
exp{−i(r cosθ + αθ)}9AB(r, α) = 1

2
sin(πα) exp{−i(r cosθ + αθ)}

×
[
iH(1)

1−α(r) exp

(
−1

2
iπα

)(−1
+1

)
H(1)
α (r) exp

(
i

(
1

2
πα + θ

))]
. (13)

(It is interesting to note that these equations imply a relation between the two first derivatives
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of 9AB and its mixed second derivative.) Now, integrating the radial derivative,

9AB(r, α) = 1
2 sin(πα) exp(ix)

∫ r

0
dρ exp(−iρ cosθ)

×[iH(1)
1−α(ρ) exp(− 1

2iπα)−H(1)
α (ρ) exp(i( 1

2πα + θ))]. (14)

Next, we change the integration range using (Gradshteyn and Ryzhik 1980)∫ ∞
0

dρH(1)
α (ρ) exp(−iρ cosθ) = 2 exp

(
−1

2
iπα

)
sin(πsgnθ − θ)
sinθ sin(πα)

(|θ | 6 π). (15)

Thus

9AB(r, α) = exp{i(x + α(θ − πsgnθ))} − 1
2 sin(πα) exp(ix)

∫ ∞
r

dρ exp(−iρ cosθ)

×[iH(1)
1−α(ρ) exp(− 1

2iπα)−H(1)
α (ρ) exp(i( 1

2πα + θ))]. (16)

Despite appearances, this function is smooth near the forward directionθ = 0. It is well
known that away from the forward direction the first term represents the incident plane wave,
and the second term the scattered wave (decaying as 1/

√
r for larger) (Aharonov and Bohm

1959, Berryet al 1980, Olariuet al 1985).
To transform the awkward representation (16) into the more transparent form given by

(4), (6) and (8), we note that

cos(πα)− sin(πα) exp( 1
4iπ)
√

2
∫ w/

√
π

0
dt exp( 1

2iπt2)

= exp(−iπαsgnθ) + sin(πα) exp( 1
4iπ)
√

2
∫ ∞sgnθ

w/
√
π

dt exp( 1
2iπt2) (17)

and that the leading-order large-ρ asymptotics of the Bessel functions in (14) (Abramowitz
and Stegun 1972) imply

iH(1)
1−α(ρ) exp(− 1

2iπα)−H(1)
α (ρ) exp(i( 1

2πα + θ)) ≈ −2

√
2

πρ
sin( 1

2θ)

× exp{i(ρ + 1
2θ + 1

4π)}. (18)

Then, after a little reduction, including transforming the integration variable in (16) fromρ to
t = 2 sin(θ/2)

√
(ρ/π), we obtain the equation satisfied by the leading-order approximation

tow(r, α):∫ ∞sgnθ

w/
√
π

dt exp( 1
2iπt2) ≈ exp{iθ( 1

2 − α)}
∫ ∞sgnθ

2 sin( 1
2 θ)
√
r/π

dt exp( 1
2iπt2). (19)

Differentiation with respect tor now leads to the identification

w(r, α)2→ w0(r, α)
2 ≡ 4r sin2( 1

2θ) + 2θ( 1
2 − α) as r →∞. (20)

(This procedure should be distinguished from the superficially similar argument leading to
equation (2.12) of Olariuet al (1985) that also involves a Fresnel integral, obtained by
substituting (18) into (16) directly and evaluating theρ integral; by contrast, our Cornu
representation is manifestly smooth near the forward direction.)

To get corrections tow, we replace (18) by the formally exact asymptotic Hankel expansion
(Gradshteyn and Ryzhik 1980), combine (16) and (17), and differentiate with respect tor. This
gives, after some reduction, the following differential equation:

exp{ 12i(w2 − w2
0)}
√
r∂rw = [1 + (i( 1

2 − α) + 2r∂2
rθ )Q] sin( 1

2θ) (21a)
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where

Q = cosπα

2πr

∞∑
m=0

(m− 1
2 + α)!(m + 1

2 − α)!
(2ir)m(m + 1)!

. (21b)

Next, we writew as

w(r, α)2 = w2
0(r, α) + v(r, α). (22)

Thenv(r, α) is determined by

exp

(
1

2
iv

) (
1 + ∂r v

4 sin2( 1
2 θ)

)
√

1 +
2θ( 1

2−α)+v
4r sin2( 1

2 θ)

= 1 +
1

sin( 1
2θ)

[(
i

(
1

2
− α

)
+ 2r∂2

rθ

)]
Q sin

(
1

2
θ

)
. (23)

To solve this, we expressv as a power series in 1/r, that is

v(r, α) =
∞∑
m=0

vm(θ, α)

rm
(v0 = 1) (24)

and identify the two sides term by term. This is a purely algebraic operation: no integrations
are required in the solution, because the terms generated by∂rv depend on coefficients already
found. In writing the results, it is convenient to define

β ≡ 1
2 − α. (25)

The first few coefficients (determined using Mathematica™ (Wolfram 1996) are

v1(θ, α) = −i
β

2 sin2( 1
2θ)

(θ − sinθ) + β2

v2(θ, α) = 1

16 sin4( 1
2θ)

[β(8 sinθ − sin 2θ − 6θ)− iβ2(7− 2θ2 − 8 cosθ + cos 2θ)]

v3(θ, α) = 1

sin6( 1
2θ)

[
iβ

64
(30θ − 45 sinθ + 9 sin 2θ − sin 3θ)

+
β2

384
(84θ2 − 24θ sinθ + 267 cosθ − 48 cos 2θ + 5 cos 3θ − 224)

− iβ3

192
(8θ3 + 12θ cosθ − 12θ − 9 sinθ + 6 sin 2θ − sin 3θ)

]
+
β4

12
.

(26)

We have confirmed that with these coefficients the continuation rule (10) for the backward
direction is satisfied order by order in 1/r.

In the forward direction, all these coefficients are finite, notwithstanding the inverse
powers of sin(θ/2). The coefficients can be found as the limits ofvn(θ, α) asθ → 0. More
conveniently, they can also be determined directly from the limiting form of (23) for smallθ .
After a little reduction, this takes the form

exp( 1
2iv)r2∂rv√
rv

= −sinπβ

π

∞∑
m=0

(−i

2r

)m
(m + β)!(m− β)!

m!
= 2r2∂rQ (27)

whence the lowest coefficientv1(0, α) is ( 1
2 − α)2 = β2 and the rest follow by recursion.

Defining

vn(0, α) = in+1un (28)



L452 Letter to the Editor

we find

u1 = −β2 u2 = β2

3

u3 = β4

12
− 41β2

180
u4 = −8β4

45
+

26β2

105

u5 = −β
6

40
+

835β4

2268
− 199β2

525

u6 = 2809β6

22 680
− 293 761β4

340 200
+

10 517β2

13 860

u7 = 5β8

448
− 20 681β6

42 525
+

23 489 777β4

9979 200
− 3177 061β2

1681 680

u8 = −21 731β8

226 800
+

8502 199β6

4490 640
− 1406 426 953β4

189 189 000
+

5648β2

1001
.

(29)

For generalr, departures from the Cornu spiral (figure 1) are revealed in the imaginary
part ofv(r, α) in (22). From the coefficients (26), it is clear that the deviations from the spiral
are of order 1/r, except in the forward direction when, as (28) and (29) show, the deviation is
of order 1/r2.

Deviation from the spiral is measured by Imw. Another measure can be defined in terms
of the rephased AB wave

9̃AB ≡ exp{−i(x + αθ)}9AB . (30)

The new measure (a kind of vorticity) is

0(r, α) = Im∇9̃∗AB(r)×∇9̃AB(r) = ∇ × Im [9̃∗AB(r)∇9̃AB(r)]

= sin2(πα)

2π |w|2 exp{−2Im (w2)}∇[Re(w2)] ×∇[Im (w2)]. (31)

Evidently,0 vanishes ifw is real, that is if the cornufied wave lies exactly on the spiral. An
equivalent formula, that follows from (9) together with (13), is (for 06 α < 1)

0(r, α) = 1
4 sin2(πα)[|H(1)

1−α(r)|2 − |H(1)
α (r)|2]. (32)

From this formula, or from (30) with (22) and (26), follows the asymptotic relation

0(r, α)→ ( 1
2 − α)
2πr3

sin2(πα) as r →∞ (33)

giving further evidence of how closelyK clings to the spiral whenr is not small.
The series (24), whose first few coefficients are given by (26) and (29), is divergent but

enablesw, and hence9AB, to be calculated with very high accuracy. To justify these assertions,
we must first determine the high-order terms of the series. For economy of writing, we consider
only the forward direction.

For n � 1, the coefficientsun (defined by (28)) can be estimated by approximating
the rhs of the governing equation (27) using Stirling’s formula and noting that the dominant
contributions from the lhs come from the term∂rv (because in this term—unlike the termsv
in the exponential and denominator—the high orders in the series (24) are multiplied bym).
The result is the following ‘asymptotics of the asymptics’:

un ≈ β sinπβ
(−1)n(n− 2)!

2n−1π
(n� 1). (34)

Figure 2 shows how accurately this approximation captures the behaviour of the exact
coefficients (29), even for quite smalln.
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Figure 2. Full curves: coefficientsun (from (28) and (29)) of
the series (24) for points in the forward direction, as functions
of flux β = 1

2 − α, for the Fresnel argument (22); dashed
curves: the approximation (34); (a) m = 4; (b) m = 7; (c)
m = 10.

Thus the series (24) diverges factorially, in the manner familiar in asymptotic expansions
(Dingle 1973), with terms initially decreasing whenr is large. From Stirling’s formula, the
smallest term is near

m∗ = int(2r + 1) (35)

and its size is
|vm∗ |
rm
∗ ≈

β sinπβ√
πr3/2

exp(−2r). (36)

Asymptotics folklore suggests that the error in truncating the series (24) is of the same
order as the first omitted term, so that the best approximation results from truncation at the
least term. A more precise result can be derived by Borel summation (Dingle 1973, Berry
1989) of the tail of the series, using the approximation (34) and the fact that the phases of
successive terms differ byπ/2. The result is that if the truncation error is defined as

error(n) ≡
∣∣∣∣v(r, θ = 0, α)− i

n∑
m=1

inun
rn

∣∣∣∣ (37)

the error made by optimal truncation is 1/
√

2 times the least term (36). Thus

error(m∗) ≈ |vm∗ |√
2rm∗

≈ β sinπβ
√

2π
3/2 exp(−2r). (38)

Testing this estimate requires computation ofv(r, θ = 0, α), related to the Fresnel
argumentw by (22). To findv, we first computed the cornufied wave (7) from the AB
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Figure 3. Dots: truncation error (37) in the series (24) for the
Fresnel argument (22), for pointsr in the forward direction,
with (a) r = 2, α = 3

8 ; (b) r = 3, α = 1
8 ; (c) r = 4, α = 1

4 .
Dashed line: the estimate (38).

series (9), equated this with the Fresnel integral (4) via (8), and then solved numerically for
the argumentw. As figure 3 shows, the error (37) thus calculated is remarkably close to the
estimate (38).

With systematic improvement of the ‘asymptotics of the asymptotics’ (34), based on a
more careful analysis of the governing equation (27), it should be possible to reduce the error
(38) by further exponential factors using hyperasymptotic resummations (Berry and Howls
1991, Berry 1992), but we do not pursue this here.

Finally, we speculate on the physical reason why the AB wave is so intimately linked to
the Cornu spiral, as we have demonstrated. In optics, the spiral appears in edge diffraction
(Born and Wolf 1959), both in the original approximate theory of Fresnel and in the exact
solution (Sommerfeld 1950) for diffraction by an impenetrable half-plane. In the sheet gauge
(2), the vector potential acts as a phase-changing screen with a discontinuity—an edge, indeed,
situated at the flux linex = y = 0.

But there are differences: in Sommerfeld’s wave, there are two Fresnel integrals, associated
with the incident and reflected beams, unlike the AB screen which is transparent and where there
is therefore only one Fresnel integral associated with the edge. This Cheshire-cat situation—
an edge without an associated reflecting screen—is characteristic of the AB wave, where the
edge is defined as a line around which the phase of the AB wave (after the vector potential
has been gauged way) changes by 2πα. Perhaps the deviation of the argumentw from the
simple geometrical expression 2(r−x) is determined by multiple windings about the edge, in a
manner related to the whirling-wave representation of9AB (Berry 1980, Morandi and Menossi
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1984, Rammer and Shelankov 1987); then the small exponential (36) might be interpreted, as
is common in asymptotics, as an instanton in some complexified dynamics associated with the
AB effect.

This work began at the Weizmann Institute (Rehovot, Israel) for whose hospitality we are
grateful. AS thanks Michael Stone for numerical assistance in the early stages of this work,
and the Swedish Natural Science Research Council for financial support.
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