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LETTER TO THE EDITOR

The Aharonov—Bohm wave and the Cornu spiral

M V Berryt and A Shelankovi

T H H Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 1TL, UK
1 Department of Physics, University of Umed, SE-901 87 Umed, Sweden

Received 8 July 1999

Abstract. For flux «, the Aharonov—-Bohm wavefunctiofiag (7, ) is represented exactly in
terms of Fresnelintegrals. Numerical evidence shows that in the comipieglane the wave clings

to the Cornu spiral for all positionsexcept very close to the flux line, that is, the argumet, «)

of the Fresnel integrals is almost real. This is confirmed by deriving an asymptotic expansion for
w in powers of ¥r.

Our purpose is to describe and explain a remarkable property of the Aharonov—Bohm (AB)
waveWag (7, @) (Aharonov and Bohm 1959, Olarit al 1985), describing the scattering of

a plane wave of quantum particles with chaggby a magnetic field confined to a line with
(quantum) fluxx, that is, by the inaccessible field

B(r) =V x A(r) = ga(S(T). (1)

The property is thaWag has a natural and convenient geometrical representation in
terms of the Cornu spiral (Fresnel integral) of optics. This was discovered through numerical
explorations, motivated by the fact théilyg is given by a Fresnel integral exactly fer= %
(Aharonov and Bohm 1959), and in the paraxial approximation (that is, near the forward
direction) for alle.

Inther plane we use coordinates= (x, y) = (r cosd, r sind), and consider the incident
plane wave travelling in the positivedirection. We choose the wavenumbet 1 (equivalent
to measuring distances in units of wavelenggr)).

We begin with the paraxial approximation (Shelankov 1998, Berry 1999), which is most
easily implemented in the sheet gauge where, witthenoting the unit step

A(r) = As(r) = —%S(X)[®(y) — O(=y)]ex. 2

In this approximation, back-scattered waves are neglecteddaadts like a phase-changing
screen ak = 0, generating the near-forward wave

Wag (1) ~ WaB, paraxialT)

. _1 00 _ 2
_ explicx 471)}/ dy’exp{i |:—7TaSgny/+ (y—y) “

2w x 2x
= exp(ix) [cos(:m) — sin(ra) exp(%in) Vv2F <%>} . 3)
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Here F denotes the Fresnel integral, which we here define as

w7
F(w) = / dr exp(Zint?). (4)
0

As w varies from—oo to +oo through real values, the parametric plotfofw) in the complex
F plane describes the Cornu spiral (Born and Wolf 1959).
Motivated by the form of (3), and now reverting to the more familiar circular gauge

Ar) = Aoy = % e, ()
q 2mr

we define theornufied waveX for the exact AB wave by
Wag (r) = expli(x +af)}[cos(ma) — sin(ra) exp(2in)v/2K (r, a)] (6)

that is
K(r a)= M[eos@m) — exXp(—i(x +af)Wag (r, @)]. @)
' V2 sinrra) ’
Now we can define our main object of study: the functiotr, «) defined implicitly and
uniquely by

w(r,a)/v/m
K(r,a) = F(w(r,a)) = f dr exp(3int). (8)
0

Whenw is real, the cornufied wave lies on the Cornu spiral in the comglgkane. This
is the case paraxially, as in (3), wheve= y/./x, and fore = % where (Aharonov and Bohm
1959)w = /[2(r — x)] = 2sin(0/2)./r. Non-zero imaginary parts af will correspond to
points off the spiral.

It is easy to comput& numerically via the representation @fg in the circular gauge
(Aharonov and Bohm 1959) as a convergent series of Bessel functionsg(wéthlaced by
6 + 7 because the original AB wave travelled in the directianrather than %)

Wag(r, @) = Y (=)™ explim(6 +m)} i (r). 9)
m=—0oQ

Figure 1 shows howk condenses onto the Cornu spiral raincreases. This is the
phenomenon we wish to explain. Even wheg 1, that is ¥ (27) wavelengths from the flux
line, the wave follows the spiral rather closely. Aincreases, the cornufied wave explores
more of the spiral, as expected from the solutiondos % with the extreme values (in the
backward directio® = +x) w = +2,/r, corresponding to the two ‘eyes’ of the spiral (the
origin corresponds to the forward directién= 0). As is evident from the groups of points
with different«, the Fresnel argument(r, «) depends on flux, as we will soon explore in
detail.

W,p is a single-valued function of position bit is not; (6) or (7) imply the following
continuation rule in the backward directién= +x:

expira)K (7w, r, ) — exp(—izra)K(—m, r,a) = (L +i)cosna. (10)
Moreover,Wag vanishes at the origin, b takes the value
cot
K(r,a) —> 1(47:[?) as r— 0. (11)

Therefore the backward discontinuity (10) must disappearas0, and indeed the value (11)
is the condition for this. This limit represents an extreme departure from the spiral of figure 1,
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Figure 1. Cornufied AB waveK (r,«) (equation (7)), fora = % (open circles),a =
3 (squares),e = 3 (diamonds),a = 3 (filled circles) andé = {-m, —3r/4, —7/2,
—n/4,0, /4, /2, 37 /4, 7}, compared with the Cornu spiral (full curve®)(r = 1, (b): r = 2,
(©):r=3,d): r=4.

with points representingg condensing onto the line with sloper /4, anchored at the origin
K =0fora = % the values oK depending only o and not org.
The AB wave (9) has the following symmetries:

Ypg(r,a+1) = — eXFXiQ)\I’AB (r,a)

12)
\IIAB (rv 95 _a) = lIJAB (ra _6’ Ol)

enabling us to restrict the range®to 0 < @ < %—although all subsequent formulae will be

valid in the larger interval & o < 1. Moreover, althougl/ag is a periodic function of we
will find it convenient to restrict angles to the range < 6 < 7, and confirm later that the
wave is single-valued according to (10).

To manipulateW,g into the form (6), we first note that recurrence formulae for Bessel
functions enable the radial and angular derivatives to be written (generalizing an equation in
Aharonov and Bohm (1959)) as (denoting derivatiggéx by a,)

( o ) expl—i(r cosh + af)}Wap (r, ) = %sin(na) exp{—i(r cosd + )}

'_39
X |:iH1(1)a(r) exp(—%ina> (:i) HY (r) exp(i (%n’a + 9))} . (13)

(Itis interesting to note that these equations imply a relation between the two first derivatives
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of Wg and its mixed second derivative.) Now, integrating the radial derivative,

Wag(r, @) = 3 sin(ra) exp(ix) f dp exp(—ip cosh)
0

x[i H?, (o) exp(—3ima) — H® () expli(3ra +6))]. (14)
Next, we change the integration range using (Gradshteyn and Ryzhik 1980)
o . 1. sin(zrsgre — 0)
dpHY — s0) =2 —= _— 0| < ). 15
/o pH,” (p) exp(—ip cosd) exp< zlnot) Sind sinGre) (16| < ) (15)

Thus
Wag (7, @) = expli(x +a(d — wsgrv))} — % sin(ra) exp(ix) /00 dp exp(—ip cosh)

x[i H2 (0) exp(—3ima) — H® (p) expli(3ra +6))]. (16)

Despite appearances, this function is smooth near the forward directiorD. It is well
known that away from the forward direction the first term represents the incident plane wave,
and the second term the scattered wave (decaying.gs for larger) (Aharonov and Bohm
1959, Berryet al 1980, Olariuet al 1985).

To transform the awkward representation (16) into the more transparent form given by
(4), (6) and (8), we note that

w7
coSra) — sin(ra) exp(%in)ﬁ/ dr exp(Zint?)
0

ocosgry
= exp(—irasgry) + sin(ra) exp(%in)«/é/ dr exp(3imt?) (17)
w//T
and that the leading-order largeasymptotics of the Bessel functions in (14) (Abramowitz
and Stegun 1972) imply

i1 (p) exp(—lima) — HO (p) expli(iwa +6)) ~ 2 /% sin(30)

x expli(p + 36 + 3m)}. (18)

Then, after a little reduction, including transforming the integration variable in (16) frémn
t = 2sin0/2)/(p/m), we obtain the equation satisfied by the leading-order approximation
tow(r, a):

ocosgrd oosgro
/ dr exp(3inr?) ~ explio (3 — o)} dr exp(3iz ). (19)
w/JT 2sin(360)/r/m
Differentiation with respect te now leads to the identification
w(r, a)? = wo(r, )’ = 4r Sinz(%é’) + 29(% —a) as r —»>oo. (20)

(This procedure should be distinguished from the superficially similar argument leading to
equation (2.12) of Olariet al (1985) that also involves a Fresnel integral, obtained by
substituting (18) into (16) directly and evaluating theintegral; by contrast, our Cornu
representation is manifestly smooth near the forward direction.)

To get corrections te, we replace (18) by the formally exact asymptotic Hankel expansion
(Gradshteyn and Ryzhik 1980), combine (16) and (17), and differentiate with respe@tiis
gives, after some reduction, the following differential equation:

expl3i(w? — w)IVriw = [1+ (5 — @) + 2rd3) 0] sin(26) (21a)



Letter to the Editor L451

where
cosa O (m — 2 +a)l(m+ 1 —a)!
= 2
0 2nr mz:% 2ir)"(m + 1)! (215)
Next, we writew as
w(r, a)? = wi(r, @) +v(r, a). (22)

Thenv(r, ) is determined by

1+ B
1 1 1 1 1
o) L) 111 ) ) oon(l). o
2 1+ 20(3—a)+v sin(6) 2 2

4rsir?(36)

To solve this, we expressas a power series in/t, that is

v =Y M (o=1) (24)
m=0

and identify the two sides term by term. This is a purely algebraic operation: no integrations

are required in the solution, because the terms generatga lgpend on coefficients already
found. In writing the results, it is convenient to define

B = % - . (25)
The first few coefficients (determined using Mathematica™ (Wolfram 1996) are
0,a) = —1—————(0 — SInh) +
v1(0, @) Zsinz(%@)( )+ B
1
0, 0) = ——————[B(85sing —sind — 60) — iB%(7 — 202 — 8co + cos D
v2(0, @) 163irf‘(%9)[ﬁ( ) —1B( )
1 i8 _ . .
0,0) = ——| — (300 —45sinf +9sinH —sinP 26
v3(0, @) siP(0) |:64( ) (26)
2
+3_84(8492 — 249 sin6 + 267 cos) — 48cos B + 5cos P — 224)
- 03 4
—|1—92(8(93 +129 cosh — 129 — 9sind + 6sin D — sin 39)} + %

We have confirmed that with these coefficients the continuation rule (10) for the backward
direction is satisfied order by order i

In the forward direction, all these coefficients are finite, notwithstanding the inverse
powers of sii®/2). The coefficients can be found as the limitsvptd, «) asé — 0. More
conveniently, they can also be determined directly from the limiting form of (23) for small
After a little reduction, this takes the form

expizivr? v singB S (—i\" (m+plm—p)!
T == ;(5) — =2r%9,Q (27)

whence the lowest coefficient (0, o) is (% — «)? = B2 and the rest follow by recursion.
Defining

Up (0’ 05) = in+1un (28)



L452 Letter to the Editor

we find
’32
2
u; = —p Uz ==
/34 41/32 8ﬁ4 26ﬂ2
“37 127 180 “=""75" 105
B8 8358% 19982
Us = —— + —
40 2268 525 (29)

_ 2809° 20376%* 10517

"6 22680 340200 = 13860
5% 206818° 2348977B% 3177068
“TT 448" 42525 9979200 1681680
v 21731°  850219%° 1406426 958" 564882

226800 4490640 189189000 1001 -

For general, departures from the Cornu spiral (figure 1) are revealed in the imaginary
part ofv(r, ) in (22). From the coefficients (26), it is clear that the deviations from the spiral
are of order 1r, except in the forward direction when, as (28) and (29) show, the deviation is
of order 1/r2.

Deviation from the spiral is measured by im Another measure can be defined in terms
of the rephased AB wave

Upg = exp(—i(x +ah)}Wag. (30)
The new measure (a kind of vorticity) is

C(r, @) = Im VWi (r) x Vg (r) = V x Im [Uig (1) V¥ag (r)]
sin’ (o)

27 |w|?

Evidently, I" vanishes ifw is real, that is if the cornufied wave lies exactly on the spiral. An
equivalent formula, that follows from (9) together with (13), is (fokQx < 1)

L(r, @) = sif(ra)[|HY, () — [HP (). (32)
From this formula, or from (30) with (22) and (26), follows the asymptotic relation

exp(—2Im (w?)}V[Re (w?)] x V[Im (w?)]. (31)

(3—a)
I'r,a) — sir’(ra) as r - o (33)
2713

giving further evidence of how closel clings to the spiral when is not small.

The series (24), whose first few coefficients are given by (26) and (29), is divergent but
enablesv, and henc& g, to be calculated with very high accuracy. To justify these assertions,
we must first determine the high-order terms of the series. For economy of writing, we consider
only the forward direction.

Forn > 1, the coefficients:, (defined by (28)) can be estimated by approximating
the rhs of the governing equation (27) using Stirling’s formula and noting that the dominant
contributions from the lhs come from the tefy (because in this term—unlike the terms
in the exponential and denominator—the high orders in the series (24) are multiplied by
The result is the following ‘asymptotics of the asymptics’:

—_1)" — |

L”lz)' (> 1). (34)
2rix

Figure 2 shows how accurately this approximation captures the behaviour of the exact
coefficients (29), even for quite small

u, ~ gsinnp
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12300

Figure 2. Full curves: coefficients,, (from (28) and (29)) of
the series (24) for points in the forward direction, as functions
of flux 8 = 3 — a, for the Fresnel argument (22); dashed
curves: the approximation (34y)m = 4; (b)) m = 7; (c)

m = 10.

Thus the series (24) diverges factorially, in the manner familiar in asymptotic expansions
(Dingle 1973), with terms initially decreasing wherns large. From Stirling’s formula, the
smallest term is near

m* =int(2r +1) (35)

and its size is
v BSinzp
N
Asymptotics folklore suggests that the error in truncating the series (24) is of the same
order as the first omitted term, so that the best approximation results from truncation at the
least term. A more precise result can be derived by Borel summation (Dingle 1973, Berry

1989) of the tail of the series, using the approximation (34) and the fact that the phases of
successive terms differ by/2. The result is that if the truncation error is defined as

exp(—2r). (36)

" ity
errorn) = |v(r,0 =0, ) — i e 37
(n) = |v(r a) n; p (37)
the error made by optimal truncation ig.}2 times the least term (36). Thus
- sin
errorm™) ~ [Vne| -, pSINTP exp(—2r). (38)

J2rm ~ \/Zs/z
Testing this estimate requires computationwgf, &6 = 0, @), related to the Fresnel
argumentw by (22). To findv, we first computed the cornufied wave (7) from the AB
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series (9), equated this with the Fresnel integral (4) via (8), and then solved numerically for
the argumentv. As figure 3 shows, the error (37) thus calculated is remarkably close to the
estimate (38).

With systematic improvement of the ‘asymptotics of the asymptotics’ (34), based on a
more careful analysis of the governing equation (27), it should be possible to reduce the error
(38) by further exponential factors using hyperasymptotic resummations (Berry and Howls
1991, Berry 1992), but we do not pursue this here.

Finally, we speculate on the physical reason why the AB wave is so intimately linked to
the Cornu spiral, as we have demonstrated. In optics, the spiral appears in edge diffraction
(Born and Wolf 1959), both in the original approximate theory of Fresnel and in the exact
solution (Sommerfeld 1950) for diffraction by an impenetrable half-plane. In the sheet gauge
(2), the vector potential acts as a phase-changing screen with a discontinuity—an edge, indeed,
situated at the flux line = y = 0.

Butthere are differences: in Sommerfeld’'s wave, there are two Fresnel integrals, associated
with the incident and reflected beams, unlike the AB screen which is transparentand where there
is therefore only one Fresnel integral associated with the edge. This Cheshire-cat situation—
an edge without an associated reflecting screen—is characteristic of the AB wave, where the
edge is defined as a line around which the phase of the AB wave (after the vector potential
has been gauged way) changes w2 Perhaps the deviation of the argumanfrom the
simple geometrical expressiofr2- x) is determined by multiple windings about the edge, ina
manner related to the whirling-wave representatiow gf (Berry 1980, Morandi and Menossi
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1984, Rammer and Shelankov 1987); then the small exponential (36) might be interpreted, as
is common in asymptotics, as an instanton in some complexified dynamics associated with the
AB effect.

This work began at the Weizmann Institute (Rehovot, Israel) for whose hospitality we are
grateful. AS thanks Michael Stone for numerical assistance in the early stages of this work,
and the Swedish Natural Science Research Council for financial support.
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